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Introductory Statement

The Center's mission is to improve teaching in American schools.
Too many teachers still employ a didactic style aimed at filling passive

students with facts. The teacher's environment often prevents him from
changing his style, and may indeed drive him out of the profession.
And the children of the poor typically suffer from the worst teaching.

The Center uses the resources of the behavioral sciences in pur-

suing its objectives. Drawing primarily upon psychology and sociology,

but also upon other behavioral science disciplines, the Center has formu-

lated programs of research, development, demonstration, and dissemination

in three areas. Program 1, Teaching Effectiveness, is now developing a
Model Teacher Training System that can be used to train both beginning

and experienced teachers in effective.teacLing skills. Program 2, The

Environment for Teaching, is developing models of school organization

and ways of evaluating teachers that will encourage teachers to become

more professional and more committed. Program 3, Teaching Students from

Low-Income Areas, is developing materials and procedures for motivating
both students and teachers in low-income schools.

Many research studies result in the computation of measures of asso-
ciation between pairs of variables. This paper provides a review of the

variety of measures available and explains the circumstances under which

each is appropriate. This papery then, should help educational researchers

make use of appropriate statistical methodology in studying relationships

between variables.
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Abstract

A common problem in educational research is measuring
the degree of relationship or association between two vari-

ables. Many investigato.. habitually use Pearson's product-
moment correlation coefficient or a transformation of x2.

In the past two decades, however, a variety of association
measures have been introduced in the statistics literature.

This report contains a review of available association mea-
sures, supplemented by discussion of the several factors in-

volved in selecting a measure of association, such as the
types of variables (continuous, ranked, ordered) and the

type of association expected (linear, monotone, general).

Examples illustrate the necessary calculations and provide
comparisons among the measures.
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MEASURES OF ASSOCIATION

Janet Dixon Elashoff and Charles R. Dunbar

Introduction

A comman problem in educational research is that of measuring the

degree of relationship or association between two variables. For, exam-

ple, an investigator migft wish to estimate the degree to which achieve-

ment scores can be predicted from IQ scores or the degree of agreement

between two raters using the same five-point scale. A wide variety of

association measures is available--Pearson's r, Kendall's T, Goodmln

and Kruskal's y, and others. This study reviews some association mea-

sures discussed in the statistical literature and offers guidelines for

making an appropriate choice of measure for a particular problem.

Each measure of association was developed to be applied in a par-

ticular class of problems. Thus, in our review we pay special attention

to the several major factors determining the type of problem for which

a measure was designed:

1. What type of measurement scale do the two variables represent?

2. Does one variable logically precede the other; that is, will

one variable be used to predict the other and should the

measure of association reflect this?

3. What type of relationship between the two variables is the

measure sensitive to?



4. What sampling conditions and assumptions about the joint dis-

tribution of the two variables are necessary for standard tests

of significance to be valid?

For this study, association measures have been grouped according to

the type of measurement scale for which they are designed. Variables

such as age or height are designated as continuous variables even though

they are usually rounded off to the nearest year or inch. Discrete vari-

ables are classified into four basic types: (a) rank-ordered values,

observations ranked from 1 to n; (b) ordered multicategorical values,

observations assigned scores such as 1, 2, 3, 4, 5; (c) unordered nomi-

nal values; (d) dichotomous values. Although dichotomous variables can

logically be included in type. (b) or (c), some measures of association

have been developed specifically for them.

Naturally, a variable that is intrinsically continuous could be

turned into a ranked or ordered categorical variable, or for some pur-

poses a variable of type (a), (b), or (d) could be treated as continuous.

Therefore, classification of variables by this scheme may be somewhat

arbitrary and should serve mainly as a preliminary guide to choosing a

measure of association. The final choice should rest most heavily on

consideration of the type of relationship between variables that is of

interest.

Measures of association are intended to describe the degree of rela-

tionship between two variables and are usually defined to be +1.0 (or

-1.0) for a perfect predictive relationship and 0.0 for no relationship.

Each measure of association is designed for a different type of relation-

ship. For example, since Pearson's r is designed to measure the degree



of linear relationship, r 1 only for perfect linear relationships,

and r = 0 cannot be used to infer the 'independence" of the two vari-

ables in the population; it merely indicltes no linear relationship in

the sample. any different kinds of relationships are possible between

two variables: (a) a linear relationship--the relationship between a

pretest and a posttest IQ score might ')e expected to be linear; (b) a

monotone relationship--e.g., average weight increases with height, how-

ever, the average difference in weight for two inches' difference in

height may be different at heights near 30 inches than at heights near

72 inches; (c) general association--e.g., small-group discussions occur

much more frequently in connection with social studies lessons, whereas

individual work is more often associated with math lessons.

In selecting a measure of association it is most important to have

in mind the type of relationship that might be expected to occur or that

would be of most interest. A first step in this selection procedure is

to arrange the data in a scatterplot or two -way table so that a visual

assessment can be made of the relationship between the two variables

and of any peculiarities in the data that might invalidate the choice

of a particular measure of association.

Some measures of association, such as Pearson's r, are said to be

symmetric in the two variables. That is, regardless of whether the

prediction is x from y or y from x, the measure of association, r, is the

same. Other measures, like the correlation ratio n2 or the measure X,

are said to be asymmetric; that is, under these models, prediction of

y from x might be more accurate than prediction of x from y, and thus

10
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2 2
0 in general. -Unless otherwise noted, measures of associ-

ny-x n

ation are usually symmetric in the two variables.

Measures of association can be defined for a populatiun or a sample.

For brevity we give only the formula for the sample measure; the reader

interested in the corresponding population measures should refer to ti):

literature Oted for each measure. If a sample has been selected at

random from some population, then the sample measure may be used to make

inferences about the value of the population measure. This assumption

of random sampling is implicit in all tests of the statistical signifi-

cance of a measure of association: Other assumptions necessary for

testing the statistical significance of an observed degree of associ-

ation will be discussed in conjunction with each particular measure.

Continuous or Rank-Ordered Variables

If both variables are continuous, the standard measure or associ-

ation is Pearson's r. Two nonpiirametric measures, Spearman's r and

Kendall's tau are also applicable in this case. Two hypothetical exam-

ples will be used to illustrate these measures.

In a research study, several teachers were observed in their class-

rooms over a six-week period. Among other things, the observs coded

negative feedback (e.g., criticism, rebuke)'given by these teachers to

18 randomly chosen students, and, at the end of the time period, a-

self-esteem assessment scale was administered to the students. The data

are shown in Table 1 and Figure 1.

For the second example, shown in Table 2 and Figure 2, an instructor

in an educational psychology course wished to use the class results on
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TABLE 1

Student Self-Esteem and Rate of Negative Feedback from the Teacher
(Average Negative Responses per Pupil Classroom Hour)

Student Self-esteem
Negative -

feedback rate Student Self-esteem
Negative-

feedback rate

1 44 4.13 10 64 2.75

2 70 3.38 11 100 1.25

3 110 .38 12 34 5.88

4 42 5.63 13 74 2.50

5 68 1.88 14 32 7.00

6 88 2.36 15 120 .64

7 72 2.12 16 62 3.82

8 90 1.00 17 56 3.00

9 102 .85 18 86 1.50

Self-esteem
scale

120

100

80

60

40

20

1 2 :, 4 5 6 7

Average negative responses per pupil classroom hour

Fig. 1. Scatterplot of self esteem vs. negative-feedback rate.
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TABLE 2

Scholastic Aptitude Subtest Results for Twenty-Four Students
(Possible Score of 800)

Student Verbal Mathematical Student Verbal Mathematical

1 770 G90 13 800 770

2 540 480 14 740 790

3 610 540 15 570 660

4 630 510 16 680 720

5 590 640 17 580 610

6 700 540 18 660 490

7 650 530 19 450 400

8 510 380 20 610 460

9 610 680 21 560 550

10 520 420 22 620 630

11 690 590 23 610 680

12 670 760 24 660 650

Verbal

GOO

700
:1 tie)

6
600 `6

500

400

r.

200 a00 400 500 600 700 800

13 athematical

2. Scatterplot of verbal vs. mathematical SAT scores.
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the subtests of the Scholastic Aptitude Test to demonstrate that the two

test sections usually have a correlation near .64.

Theobservationsonthetwovariableswillbedenotedxiandy.1 for

individuals i = 1, n.

Pearson Product-Moment Correlation

The most commonly used measure of association for two continuous

variables is the Pearson product-moment correlation. The population mea-

sure is usually denoted by p and the sample measure by r. Per.irson's r

is designed for situations in which the relationship between variables

x and y is linear. The measures p and r will be +1.0 for a perfe.^.t lin-

ear relationship with positive slope (see Figure 3a) and -1.0 for a per-

fect linear relationship with negative slope (Figure 3b). They will be

zero if there is no linear relationship (see Figure 3 c and d).

The population measure p is defined as

P =
x y

E(X - px)2
py)2 1/2

Covariance (x,y)
E(X - p

x
) (Y - p )

The sample statistic r is

(2) r

1(x
i

- TC)2 (57 - D11/2

(xi - (Yi

i

For the self-esteem example from Table 1, r = -.924. This means

there is a close linear relationship between negative-feedback rate and

self-esteem, but in a negative direction. As negative responses increase,

14



(a) r = + 1.0 (b) r = - 1.0

(d) r = 0.0

(c) r = 0.0

15
r = .75

Fig. 3. Scatterplots showing different values of r.
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self-esteem decreases. For the data in Table 2, r = .692, representing

a fairly high, positive degree of linear relationship. It is also well

within the instructor's anticipated limits.

To make inferences about the population measure p, using r, it must

be assumed that the sample.oboervations were randomly selected from the

population and that x and y have a bivariate normal distribution. Bi-

variate normality implies that both x and y have normal distributions

and that the relationship between x and y is linear. For tests and con-

fidence intervals about the value of p, see, e.g., Dixon and Massey (1969)

or Hays (1963). For discussions of the many factors affecting the size

of r, see Carroll (1961) or Walker and Lev (1969).

In cases where the two variables can be assumed to have a bivariate

normal distribution and for some reason one or both variables have been

dichotomized but the investigator still wishes to make inferences about

the population value of p, the measures tetrachoric r, point biserial

r, (I), and biserial r have been developed. These are discussed later in

in this study. When the variables have been categorized into more than

two categories, estimation methods for p using the polychoric series

method have been developed by Lancaster and Hamdan (1964).

Pearson's r is designed for situations in which the relationship

between variables is linear, and for inferences about p to be valid the

joint distribution of x and y must be bivariate normal. If a monotone,

but not necessarily linear, relationship is of interest, or bivariate

normality is unlikely, the nonparametric measures of association, Spear-

man's rank correlation coefficient or Kendall's tau, should be considered.

16
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Spearman's Rank-Correlation Coefficient

Spearman's r is designed to measure the degree of monotone relation-

ship between two variables x and y. Instead of using the exact score

values, the observations are ranked from lowest to highest on each vari-

able separately and then Pearson's r is calculated on the ranks. When

two variables have a monotone relationship, their ranks will have a lin-

ear relationship.

For convenience, the mathematically equivalent computing formula

(3)

r 7
6L D7

r
s

= 1 -
n(n

2
- 1)

may be used. The number Di is the difference between the x and y ranks

for the ith individual.

Spearman's r will be +1.0 for perfect positive monotone relation-

ships such as those shown in Figure 3 a and e, -1.0 for perfect negative

monotone relationships, and 0.0 if there is no relationship or the re-

lationship is not monotone (Figure 3 c or d).

For the self-esteem data shown in Table 1, the rank scores are

shown in Table 3 and the rank scatterplot in Figure 4. The obtained

r
s

= -.948 is very close to the Pearson's r = -.924.

Sometimes observations will be tied as in the mathematical and ver-

bal scores from Table 2. If the number of ties is small, the midranks

of the tied observations can be used (see below) and formula (3) can

still be applied. If the number of tied observations is large, then the

reader should refer to the formula given in Kendall (1970).

The rankings for the data of Table 2 are found in Table 4 and Fig-

ure 5. Midranks are assigned by averaging the rank positions which tied
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TABLE 3

Ranked Scores on x (Negative Feedback) and y (Self-Esteem) for
Eighteen Students Arranged in Order by Rank on x

Student x ranks y ranks D
i

14 1 18 -17

12 2 17 -15

4 3 16 -13

1 4 15 -11

17 5 12 -7

16 6 14 -8

10 7 11 -4

5 8 7 1

2 9 13 -4

7 10 8 2

13 11 16 1

18 12 6 6

6 13 9 4

8 14 4 10

11 15 5 10

9 16 3 13

3 17 1 16

15 18 2 16

r 2

r
s

=1. -6L
62,

- 1 -
D
i 11328

5814
= 1 - 1.948 = - .948

n(n
2

- 1)
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lc

14 -

1:
Self-esteem

-

z

6

4

I f 114
2 4 6 8 10 12 14 16 18

Negative-feedback rate

Fig. 4. Rank scatterplot for self-esteem data.
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TABLE 4

Twenty-four Students Ordered by Rank on the
Mathematics Sub test x

Student

x ranks
(mathematical y ranks

subtest) (verbal)

14

13

12

16

1

1

2

3

4

5

3

1

7

6

2

9 7.0 14.5

22 7.0 12

23 7.0 14.5

15 9 19

24 10 8.5

5 11 17

17 12 18

11 13 5

21 14 20

3 15.5 14.5

6 15.5 4

7 17 10

4 18 11

18 19 8.5

2 20 21

20 21 14.5

10 22 22

19 23 24

8 24 23

r =
s

1
6(832.5)

1
4995

- .638=
24(24

2
- 1)

-
13800
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Verbal

24

21

lc

14

41.

3 o 9 12 15 18 21

:athematical

Fig. 5. Rank scatterplot of SAT data.
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observations would have if they were distinguishable. In Table 3, stu-

dents 9, 22, and 23 are tied on mathematics (x) scores. If their scores

were distinguishable, these three would hold ranks 6, 7, and 8. Since

they are tied, they are all assigned the midrank (6 + 7 + 8)/3 = 7.0.

Similarly, students 3 and 6 would hold ranks 15 and 16, but because they

are tied, both are given rank (15 + 16)/2 = 15.5. For the ranks of

Table 4, r
s

= .638 as compared to Pearson's r = .692.

If the observations represent a random sample from some population,

the null hypothesis that x and y do not have a monotone relationship

(that is, that their ranks do not have a linear relationship) can be

tested. Use of r
s

to make inferences about association in the population

requires that observations can be ranked without ties, so x and y must be

continuous variables. For small n (n < 30), tables of the critical values

of r
s
may be found in Siegel (1956). For large n, tables and tests for

Pearson's r provide approximate tests of the significance of r
s

.

For measures of association designed for continuous variables, the

occurence of ties can affect the validity of the significance tests. If

the proportion of ties is small, the method outlined above should be

reasonable. Other approaches to the handling of ties are possible, for

example, see the section on "ambiguous data" in Bradley (1963). If the

proportion of ties is not small, one of the association measures designed

for categorical variables should be considered instead.

Kendall's Tau

Like Spearman's rs, Kendall's tau, t, is a nonparametric rank mea-

sure of association which measures the degree of monotone relationship

between two variables; t, however, is derived from different principles.

22
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Kendall's T is +1.0 for a perfect positive monotone relationship between

x and y, -1.0 for a negaLive relationship, and 0.0 when no monotone re-

lationship exists. The measure T is based on the idea of examining all

possible pairs of observations and recording for each whether the rela-

tive ranks assigned to x agree with those assigned to y. For example,

for students numbered 14 and 12 from Table 3, the x ranks are 1 and 2

and the y ranks are 18 and 17 respectively. Thus, these two individuals

are ranked in the opposite order by variables x and y and provide an

instance of disagreement between the two rankings. Students numbered

17 and 16 provide an instance of agreement between the two rankings.

After all pairs of observations are examined, the difference between the

total number of agreements (P) and the total number of disagreements (Q)

is compared to the maximum possible number of agreements (n(n-1))/2.

Thus,

(4) T - 19
n(n -1)

2

Consider the data from Table 3. Since there are 18 cases, the total

number of pairs is (2) -
n!

(n-2)!2!
=

n(n-1)
-

18.17
= 153. When there

2 2

are no ties it is only necessary to count P or Q, but not both, because

1)-
P + Q =

n(n2
. That is, the number of pairs whose ranks disagree and

the number of pairs whose ranks agree must add up to the total number of

pairs. In the example, the student pairs numbered (17,16), (17,2),

(10,2), (5,2), (5,13), (5,6), (7,6), (18,6), (8,11), (3,15) agree in

x and y rank order. Thus P = 11 and it follows that Q = 153 - 11 = 142.

The result is T =
11

153 153
- 142

-
-131

- .856. This indicates a high degree

23
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of negative monotonicity; note that T is somewhat smaller than c_pearman's

rank correlation or the Pearson product-moment correlation.

Assuming that the individuals represent a random sample from some

population in which x and y are continuous variables, T may be used to

test the null hypothesis of no monotone relationship between x and y.

The test is based on the asymptotic normality of S = P - Q. For large n,

eLe variance of S is

(5) 6s
2 1

= n(n-1)(2n+5)

Thus if x and y have no monotone relationship,

Sz - aS

has approximately a standard normal distribution, and the null hypothesis

would be rejected if P - Q > aS z
1-a/2

or P - Q < as za/2. See Kendall

(1970) for additional details and an explanation of the continuity cor-

rection that should be used when n is small.

Kendall's tau requires that the variables be continuous so that no

ties in the ranks can occur. Because of measurement problems, however,

ties in ranking often do occur, and a special variation of tau can be

used. It is

(6) T
b
=

P - Q
1/2

g.n(n - 1) - Tx) (:n(n 1) - 9]
2

where T
x

is the number of pairs in which x scores are tied, Ty is the

number of pairs in which y scores are tied, and T
xy

is the number of
1

pairs in which both the x and y scores are tied. Note that

(7) () =P+Q+T +T - T
2 x y xy

24
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For computation of Tb, consider the SAT scores for the 24 students

shown in Table 4. Note that there are 24.23/2 = 276 different pairs of

students, and there are four tied pairs in the x ranks, three from the

7.0's and one from the 15.5's. In general, if there are m cases with

-
the same rank, these cases generate

m(m2 1)
tied pairs. Ties are not

counted as correctly or incorrectly classified and hence are ignored

when calculating P and Q. That is, when comparing students 13 and 12,

the x and y rankings agree, but when comparing students 24 and 18, the

order is neither correct nor incorrect. In this way, Q = 67 and P = 199,

T
x

= 4, Ty = 7, T
xy

= 1.

199 - 67 132 132
T
b

=

[276 - 4)(276 - 7)]
1/2

(272.269)
1/2 270.5 - 488

See Kendall (1970) and Goodman and Kruskal (1972) for significance tests

of T
b

.

For data with tied observations, Kendall also introduces Ta, the

average of the values of T obtained by all possible different rankings

of tied observations. A variation of T
a

called T
c

can be used for con-

tingency tables where the number of rows is large relative to the number

of columns or vice versa.

Summary

Three measures of association for use when both variables are con-

tinuous have been discussed: Pearson's r, Spearman's rank correlation

coefficient, and Kendall's tau. Pearson's r is a measure of linear asso-

ciation and requires the assumption of bivariate normality for valid

tests of significance. Spearman's rs and Kendall's T measure the degree
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of monotone association (or linear association of ranks). For the data

in Table 1, r = - .92, rs = - .95, T = - .86. For the data in Table 2,

r = .69, rs = .64, Tb = .49.

The measures r
s

and T may be used when the original scores have

resulted simply from two different rank orderings; measurements on an

interval or ratio scale are unnecessary.

Categorical Variables

Association measures designed for the case where both variables are

categorical include Goodman and Kruskal's y, Somers' d, Lambda (A), the

uncertainty coefficient u, and a variety of measures based on x
2

(chi

square).

When both variables are categorical, the data is usually displayed

in a classification table, such as Table 5. In this hypothetical exam-

ple, two teachers were asked to estimate the achievement potential for

78 tenth-grade students who had signed up for a French language course.

Their ratings were confined to the three categories of below average,

average, and above average.

TABLE 5

Agreement on French Achievement Potential by Two Classroom Teachers

Below
average

Teacher 2 Average
x

Above
average

Teacher 1 = y

Below Above

average Average average Totals

12 S 2

3 34

1 7 8

19

43

16

Totals 16 46 16 78

t?'



The values of the x variable, ratings by Teacher 2, are used to

define the rows of the table, and the values of the y variable to define

the columns. The number of individuals receiving score number i on the

x variable and score number j on the y variable is entered in the ij

"cell" of the table and denoted by fij. Thus, the frequency of indi-

viduals rated as having average potential by Teacher 2 and as having

above-average potential by Teacher 1 is f23 = 6. Row totals are denoted

by fi, and column totals by f.j; the grand total is f.. = n. For the

data of Table 5, f.2 = 46 and n = 78.

Categorical variables may be ordered as in Table 5 or unordered as

in variables such as field of study (major field). Some measures, such

as y, are useful when categories are ordered; others, like those based

th

on x
2

and A, ignore any ordering of categories. For situations in which

both categories of cross-classification are ordered, measures of asso-

ciation designed for continuous measures could be used by assigning

scores to each category and using a procedure which handles ties well.

Gamma

The measure y is basically a version of Kendall's T developed

for the case where the number of tied observations is large. This is

the situation in a typical contingency table. For example, in Table 5

there are only three possible rankings for 78 students, and therefore

it is impossible for each to have his own distinct rank. In fact, a

great number are put in the same category by any one rater and are,

hence, "tied." Gamma was developed by Goodman and Kruskal (1954) as a

symmetric measure of monotone association for ordered categorical vari-

ables. Gamma is estimated by
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(8) G =
P + Q

where P and Q have the same meaning as for Kendall's tau. When there are

no ties, P + Q = (n(n-1))/2 and G = T. Note that tied observations are

not considered in the calculation of G.

Figure 6 a, b, and c gives examples of tables that produce perfect

monotone association (G = 1). Tables with patterns like these with rela-

tively low frequencies in the "zero cells" will lead to high values of G.

The value of G is zero in the table in Figure 6d in which the pattern

of nonzero cells is not monotone.

f
11

0 0

0 f
22

0

0
f33

(a) G = 1.0

fll f
12

0
f22

f23

0 0 f
33

(b) G = 1.0

I-
f 0

0 f 0

f 0 f

(d) G = 0.0

0 0

f
32

f
33

(c) G = 1.0

Fig. 6. Tables illustrating various values of G. (Note that

all cells marked f in table d have the same frequency.)

;11
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The continuous SAT data of Table 4, where the number of ties is

small, yields

199 - 67 132
G - - .496

199 + 67 266

which is close to T
b

.521.

An algorithm for the calculation of G in contingency tables is

illustrated for the data of Table 5. To get P, multiply every cell

frequency fij by the sum of cell frequencies for all cells which lie to

the right of and below that cell, and add these results. For Q, the

same procedure is applied to cells to the left and below.

P = 12(34 + 6 + 7 + 8) + 3(7 + 8) + 5(6 + 8) + 34(8)

Q = 5(3 + 1) + 34(1) + 2(3 + 34 + 1 + 7) + 6(1 + 7)

P = 1047

Q = 192

1047 - 192 855
G - .690

1047 + 192 1239.-

Simple inspection of the data matrix in Table 5 indicates monotone

agreement between the two teachers. In this situation, Tb = .484, demon-

strating how different G and Tb may be when the number of ties is large.

Asymptotic tests and confidence intervals for the value of y may be

based on the asymptotic normal distribution of G. For details, see

Goodman and Kruskal (1963, 1972); these results are not included here

because of the tedious calculations involved. However, conservative

asymptotic procedures for the case where the observations constitute a

simple random sample from the population may be based on the assumption

that G has approximately a normal distribution with mean y and estimated

29
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(9)
2 2n(1 - G

2
)

s
G P + Q

23

where G is given by (7).

Somers' d

Closely related to y and T are the asymmetric measures developed by

Somers (1962). When predicting y from x is of interest,

P - Q
(10) d

yx Ty - T
xy

where P and Q are the same as for Kendall's tau, Ty is the number of

pairs tied in y, and T
xy

is the number of pairs in which both x and y

are tied.

A d for the symmetric case given by Anderson and Zelditch (1968)

is exactly the same as Tb.

(11) d =
P - Q

1/2
((P + Q + T

y
- T

xy
)(P + Q + T

x
- T

xy
)]

The relation is T
2

b
= dyxdxy = d

2
. Remember that (

2
) =P+Q+Tx + Ty - Txy.

Significance tests are based on S = P - Q as for T; see also Goodman and

Kruskal (1972).

Lambda

The X measures, both symmetric and asymmetric, were developed by

Goodman and Kruskal (1954) as measures of predictive association, dif-

ferent in concept from the measures of monotone or linear association

discussed so far. The basic purpose of Xy is to measure the degree of

success with which an individual's x value may be used to predict his

y value. The prediction procedure when x is known is to pick the y

value that has the highest frequency for that value of x; no use is

30
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made of any ordering of the actual score values. Using such a procedure

one can define the probability of making an error in prediction when x

is known, P(errorlx known), and the probability of making an error in

prediction when x is unknown and the value of y with the highest fre-

quency overall is predicted. Then A is defined as the proportionate

reduction in the probability of making an error owing to the knowledge

of x.

(12) =
P(errorlx unknown) - P(errorlx known)

y
A P(errorlx unknown)

To calculate Ly from a sample, the following argument is used.

Suppose the relationship between x and y in the sample has been observed

as in Table 5. We are then asked to guess the y score of an individual

selected at random from the n individuals represented in the table.

Without knowing that individual's x score, the best procedure is to pre-

dict the y value with the highest frequency. Define m as the index for

which f.j is a maximum,

max f = fpm.m

and then predict the score value y corresponding to the index m. For

the data of Table 5, suppose we consider using Teacher 2's assessment

to predict Teacher l's assessment. Without knowing Teacher 2's rating,

we would predict that Teacher 1 would classify a student as average

since max f1 = 46, which occurs for j = 2. The number of prediction

errors made by using this procedure is

(13) Number of errors when x unknown = n - max f = n - fpm.m
J

31,
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Suppose, however, that we are allowed to utilize the individual's

x score in making the prediction. If x has index i, we predict the

score value of y corresponding to max fib; that is, pick the value of y

with the highest frequency for that value of x. Again define

f = max f.
i

.

m 13

then, for the data in Table 5, max f
lj

= 12, max f
21

= 34, max f
3j

= 8.

The number of errors made using this procedure is n - file which is
i

78 - (12 +34 + 8) = 24 for the data in Table 5. Then Ly is the propor-

tionate reduction in the number of errors when x is utilized.

(14) Ly =
Number of errors when x is unknown - Number of errors when x is known

Number of errors when x is unknown

n - max - [n - 1 max f1]
.1

i

n max f

f - f
im m

1

n - f.m

J

where fm is the largest frequency from the column totals and f
im

is
i

the sum over all rows of the largest cell frequency in each row.

For the data in Table 5, Ly = (12 + 34 + 8 - 46)1(78 - 46) = 8/32 = .25.

Note that Ly makes no use of any ordering of the actual score values of

either x or y so it does not measure monotone association.

Tables such as those shown in Figure. 7 illustrate the kinds of

association yielding large or small L . Note that in general the values
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of L may be expected to be quite different from those of other measures

of association. (For example, tables c and f in Figure 7 yield G = 1

and table d in Figure 7 yields G = 0).

f
11

0 0

0 0 f
23

0 f
32

0

(a) L = 1

f f 0

0 f f

f0 0

(c) L = 1/3

fii

f
21

f
31

f
11

0 0

0 f
22 1

0

f330 0 i

(b) L = 1

f 0 f

0

f

f

(d) L = 1/3

0 f o

0 0

0 0 f f

(e) L = 0

0

1 0

i f

L = 0

Fig. 7. Tables illustrating various values (All cells marked f

have the same frequency.)
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For predicting x from y, Lx is defined in an analogous manner.

When a symmetric measure of association is desired (the direction of the

prediction is not important), the composite measure L can be defined

1 max + 1 max f.. - max f - max f .f
.

i j 1.1
(15) L -

2n-limcf.-max f ei1.

Calculating L from the data of Table 5 yields these results:

1 max f
ij

= 12

1 max f
ij

= 12
i j

max f. = 43'
1

max f = 46

j

+ 34 + 8 = 54

+ 34 + 8 = 54

54 + 54 - 43 - 46 19
L = - .284

2(78) - 43 - 46 67

Note the large difference between G = .7 and L = .3. Because L is

not a monotonicity measure like G but rather an index of predictive

association, there is in general no reason to expect similar results.

To make tests or confidence intervals on the value of ay, when the

observations constitute a simple random sample, we may use the fact that

Ly is asymptotically normal with mean ay and variance estimated by

(16)

(n - f
im

)(I f
im

+ f
.m

- 2 1r f
im

)

sLY (n - f.m)3

er
where 2, fim denotes summation of the maximum frequency in a row only

over those rows in which f. falls in the same column as fpm.. So, for
im

34
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the data in Table 5, fim = 12, f2m = 34, f3m = 8, and the column in

which fpm occurs is column 2 (fpm = 46); thus, Ir fim = 34.

These properties of asymptotic normality hold under the assumptions

that a random sample of size n has been drawn from the population, that

A is not equal to zero or one, that in the population the maximum pro-

portions pim and p.m are unique and p.m 1.0. Significance tests and

confidence intervals for Ax
and A are derived in a similar fashion; see

Goodman and Kruskal (1963, 1972) for complete details.

Uncertainty Coefficient

The uncertainty coefficient u, sometimes called the coefficient of

constraint, was developed by information theorists as an asymmetric or

symmetric measure of association based on the reduction of uncertainty

about one variable when the other variable is known. Thus it is concep-

tually similar to A.

An explanation for the asymmetric case is developed below. Suppose

we want to predict the value of y. The "uncertainty" about an individual's

y value when x is unknown depends on the marginal distribution of y and

is defined as

(17)

f f

11U(Y) = - / - log(2-1-)

The base of the logarithm is arbitrary, but base two is frequently used

following the lead of Claude Shannon, the information-theory pioneer, who

originally defined (17) as a measure of entropy.

When x is known

4

(18) U(y1x) f log(f-=j)

i
f
io

35
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The uncertainty coefficient denoted here by u when predicting y from x

is the reduction in uncertainty due to knowledge of x:

(19)
U(y) - U(y1x)

u =
U(y)

Note the similarity to the definition of ay..

For the data in Table 5, using logarithms to the base 2 ,

16 16 46 46 16 16
U(y) = - [TIT log .73- + T8- log

78
+ TIT log 77-0 = 1.3865

U(y1x) =
12 12 3 3 1 1

-[.78 . log 179 - + log TT + -51 log 37

5 5 34 34 7 7
+

78
- log 375- + -7.11- log 175 + .Tr3 log 37

log + log

6 , 8

log
8

+ l -r
+

og
78 19 78 43 78 16

= 1.0822

and u
y

= .219

This value is reasonably close to Ly = .25 for the same data.

A symmetric version of the uncertainty coefficient is

(20) u =
U(y) + U(x) - U(y,x)

U(y) + U(x)

where

(21) U(y,x) = - 1

f211

log (-4f)
n

For more information and significance tests, see Attneave (1959).

Chi Square

The chi-square test is commonly used to test for association between

categorical variables. The chi-square test ignores ordering of the vari-

ables; that is, it is insensitive to the score values of x and y. The

X2 statistic itself cannot be used as a measure of association since it
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ranges from 0 to co; a number of transformations of x
2

have been proposed

to serve as association measures.

(22)

For a test of independence between two categorical variables

X2 = II

n(f

ij

- f

i

f /n)
2

f.
ij

1. f .j

For the data of Table 5, x
2
= 37.87 with 4 degrees of freedom; see the

computations in Table 6.

TABLE 6

Calculation of Chi Square for Data from Table 5

Cell

Observed
frequencies

(f )

Expected
frequencies

LA
f /n) 2n(f.. - f

1 . j
f f .

ij

1-1 12 3.90 16.82

1-2 5 11.21 3.44

1-3 2 3.90 .93

2-1 3 8.82 3.84

2-2 34 25.36 2.94

2-3 6 8.82 .90

3-1 1 3.28 1.58

3-2 7 9.44 .63

3-3 8 3.28 6.79

Any table in which the cell frequencies differ markedly from the

frequencies to be expected if the variables were independent can lead to

a large value of X2. That is, a large x
2

does not imply the existence

of any particular type of association. Only a table such as that shown

in Table 7 can lead to a zero value of x
2

.
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TABLE 7

A Contingency Table in Which x
2

= 0

12 12 6 30

20 20 10 50

8 8 4 20

40 40 20 100

When n is large and none of the expected cell frequencies is too

small (see Cochran, 1954), the calculated x
2
can be referred to a table

of the x
2 distribution using degrees of freedom = (r - 1)(c - 1) to test

the null hypothesis of independence or no association between the vari-

ables of classification. (Here r is the number of rows and c the number

of columns.)

A substitute for the standard x2 test that is less sensitive to

small frequencies is the method based on the likelihood ratio, which is

given in Mood and Graybill (1963). For 2x2 tables with small n, Fisher's

exact test can be used for significance testing (see Siegel, 1956).

There is one basic transformation for turning a computed x
2

statis-

tic into an index of association ranging from 0 to 1. For a 2x2 contin-

gency table, this index is called phi, 4), and for a larger table it is

called Cramer's V. It is

(23)

E.2

X---
n(m - 1)

1/2

t

A
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where m is the number of rows or the number of columns, whichever is

smaller. For the data of Table 5, V = .49. Another transformation of

2
x called the contingency coefficient has been proposed

(24) c

X2 +n

1/2

However, since C has a maximum value less than 1.0 dependent on r and c,

it is not widely used.

When there are two rows and two columns, m - 1 = 1 and V = (x
2
/n)

1/2
.

In this special case the measure of association is denoted by 0.

(25)

The data shown in Table 8 may be used to illustrate the use of 0.

A junior high school principal was interested in a quick index of asso-

ciation between academic achievement and musical inclination for the

pupils in his school. Although both are continuous variables, he forced

each into two easily observed categories, namely on "honor roll" or "not

on honor roll" and "music interest" or "no music interest" (participation

in band or glee club or two music courses constituted "interest"). For

this data, x
2
= 98.8, 0 = .393.

TABLE 8

Six Hundred Forty Junior High School Students
Classified on Academic Achievement and "Music Interest"

Honor Roll Not Honor Roll

Music 76 42

No Music 100 422

176 464

118

522

I .640

39
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An alternate formula for (I) can be derived from Pearson's r by assign-

ing values of 0 and 1.0 to the row and column categories. The results

of the two approaches will be identical. Unfortunately (I) can be as

great as 1.0 only when the marginal frequencies are the same for both

variables. See Guilford (1965) or Walker and Lev (1953) for further

discussions of (1).

Tetrachoric r

This measure is an approximation to Pearson's r for continuous vari-

ables x and y, which have both been forced into dichotomies to yield a

2x2 contingency table. The computation formula for r is long and com-

plicated. One approximation formula is

(26) r
t
= cos

(180°

VIT12721

)/ fllf22 + /f12f21

Tables in Guilford (1965) can be entered with f
11

f
22

/f
12

f
21

to give the

value of r
t

computed from formula (26). This formula only provides a

good approximation when both variables are split at their medians. For

the data in Table 8, rt = .671. Note the wide divergence between the

values obtained for r
t

and (I) even though both measures are based on r.

For a complete explanation of tetrachoric r and information on signifi-

cance testing, see Guilford (1965).

Summary

When both variables are categorical and both are ordered, Goodman

and Kruskal's y or Somers' d provide measures of association based on

counting agreements and disagreements between x and y rankings for all

pairs of observations. When either the x or the y variable is not
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ordered or nonmonotone relationships between x and y are of interest,

the asymmetric or symmetric measures of predictive association A, or

of uncertainty u, or a measure based on Pearson's r or x
2
may be used.

For any of these measures, significance tests of the null hypothesis of

no association of the specified type rely on large-sample normal or x
2

approximations.

For the data in Table 5, y = .59, d = .48, A = .28, u = .11,

v = .49 and d = .47, ay = .25, uy = .22.
yx

One Continuous and One Categorical Variable

For the situation where one variable is continuous and the other

categorical, we denote the continuous variable as y and the categorical

variable as x. No measures of association have been developed specifi-

cally for the case where x is ordered and multicategorical. Thus, two

options are available if the categorical variable is ordered: ordered

scores could be assigned to x and a measure for continuous variable such

as r, r
s
, or T computed; or, y could be categorized and y computed.

In this section we review measures based on the correlation ratio,

n2 , for the case where x has several categories, point-biserial and

biserial r, and modifications of y and A for use when x is dichotomous.

Table 9 constitutes a hypothetical example; it represents Reading Readi-

ness raw scores (instead of the customary percentiles) from a 0 to 140

scale for 30 children with kindergarten training.

41
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TABLE 9

Reading Readiness Raw Scores for Thirty Children
with Kindergarten Training

Male Female

nm = 14

= 75.14

a
m
= 8.33

62 66

63 68

68 68

70 70

72 75

72 77

73 77

74 78

76 79

80 80

82 81

85 83

86 85

89 86

87

89

nF = 16

= 78.06

a
F

= 7.19

n=30

= 76.70

a
T

= 7.74
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Correlation Ratio

The correlation ratio based on a continuous y variable and a cate-

gorical x variable is

n.

2
(27)

nYx / /
i j 3

where j is the index for the grouped variable, 5.i. is the mean of the

y scores for individuals with x = i, and is the mean of all the y

scores. In analysis of variance terms

(28)
n2 Sum of squares between groups
yx Sum of squares total

Thus n
2

yx
can be interpreted as the proportion of variance in the y vari-

able which can be accounted for by knowing the classification of the x

variable. Note that the association between the means of y and the

classification x may be of any type. For the data shown in Table 9,

n
2

yx
= .02. For details see Hays (1963) or Guilford (1965).

Other measures of association closely related to n
2
are w

2
, e

2
,

and thethe intraclass correlation. See Glass and Hakstian (1969) for

a comparative discussion of these measures and their interpretation.

The significance test for n
2

and the related measures is simply the

standard F test.

Biserial and Point-Biserial Correlation

When one variable is continuous and the other dichotomous, the

traditional measures of association have been point-biserial, rpb, and

biserial, rb. They are based on Pearson's r and assume normality of the

continuous variable. The measures r
pb

and r
b

will approach 1.0 as the
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means of the y variable in the two x categories get farther and farther

apart relative to the within-group standard deviation. The measures

will be zero when the mean of the y variable is the same for both values

of x. For a fixed difference in the y means in the two groups relative

to the within group standard deviation, the value of r
pb

varies with the

quantityanin.2/N2;thatis,r.pa
will be larger for nl = n2 than for

n
1

n
2
for fixed N.

Suppose a measure of association between sex and reading readiness

was desired. For convenience, the data of Table 9 have been arranged in

ascending order. The point-biserial r is simply Pearson's r evaluated

with labels 1 and 2 assigned to the two x categories; a simple computing

formula is the following:

(29)

where

(72 - 71) rbiTii2

r
pb

=
s
t N

2

71 = mean of continuous variable in category x = 1

= mean of continuous variable in category x = 2

n
1
= number of cases in category x = 1

n
2
= number of cases in category x = 2

N= n
1
+ n

2

s
t
= total standard deviation of the continuous variable.

For the data of Table 9, let girls constitute category 2 and boys

category 1, to obtain
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72 -73. /47372
r
pb

=
s
t N

2

78.06 - 75.14
V(.467)(.533)

7.74

= .188

Conditional on the observed values of n
1

and n2, a test of the

null hypothesis of no association may be performed just as for Pearson's

r under the assumption that the variable y has a normal distribution

with the same variance in each category of x.

If the x variable was formed by collapsing a continuous variable

with a normal distribution into a dichotomy, the biserial correlation

coefficient may be used:

(30) r
b

= y2 yl n1n2
s
t hN

2

where h is the ordinate from the unit normal distribution, read at the

-point where the areas defined by nl/N and n2/N meet.

OM 1./, 411M

h = .3477

Significance tests on the biserial correlation coefficient are

usually done in the same manner as for Pearson's r; see Guilford (1965)

for a complete discussion.

Gamma
D

Elashoff (1971) developed a version of Goodman and Kruskal's y for

the case of a dichotomous and a continuous variable.
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2U

1
D n

1
n
2
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where U is the Mann-Whitney U statistic. Consider all pairs of observa-

tions in which one member of the pair belongs in category 1 and the

other in category 2: there are nln2 pairs; then, U is the number of

pairs in which the y observation from category 2 exceeds the y observa-

tion from category 1. The U statistic can also be calculated from the

relationship

(32) U = n1n2 + nl (n
1
+ 1)/2 - R

1

where,all the y observations are ranked from 1 to n
1
n
2
and R

1
is the sum

of the ranks for observations in category 1.

The measure G
D
will get larger as the medians of the y observations

in the two categories get farther apart relative to the within-group

ranges.

For the data in Table 9, the ranks of the observations are

Males = {1, 2,

26.5,

5.0, 7.5,

29.5}

9.5, 9.5, 11, 12, 14, 19.5, 22, 24.5,

Females = {3, 5.0, 5.0, 7.5, 13, 15.5, 15.5, 17, 18, 19.5, 21,

23,

RH = 193.5

U = 135.5

2(145.5)

24.5,

- 1 =

26.5,

271

28,

- 1 =

29.5}

1.21 - 1.0 = .21G
D 224 224

Conditional on n
1

and n2, and assuming that the y variable is con-

tinuous, a test of the null hypothesis that the distributions of y in

the two categories of x are identical may be made using tables and tests

for the U statistic or the Wilcoxon rank-sum statistics R
1

or R.
2'

see,

46



40

e.g., Dixon and Massey (1969). If the number of ties is mall, the

midrank procedure shown above may be used. If the number\of ties is

large, the y variable should probably be categorized and admeasure for

categorical variables used.

Lambda Measures

Several measures of predictive association relatecl., o Goodman and

Kruskal's X were developed by Elashoff (1971) for se when prediction

of the dichotomous variable x is of interest.

A measure sensitive to differences in mean of the continuous vari-

able corresponding to the two values of x is

P( misclassificationly known )
(33) X

1
= 1

P( misclassificationly unknown )

The calculation of Al is based on the cumulative frequency distributions

of y for each x category. If we label the dichotomous categories 1 and

2, as usual, then define

d
+

= max (N
1
(a) - N

2
(a))

a

d = max (N2(a) - N1(a))
a

d = max (d+, d-)

where N1(a) represents the cumulative frequency of

equal to a in category i. If d+ > d, then

n2 + d
m

(34) X
1
=

1 - m

where m = max {n1 /N, n2 /N }.

41

y scores less than or



41

TABLE 10

Cumulative Frequency Distributions for
Reading Readiness Scores

FcMle point

N1

(male)

N
2

(female)

Difference
(N2 - N

1
)

62 .
1 0 -1

63 2 0 -2

66 2 1 -1

68 3 3 0

70 4 4

72 6 4 -2

73 7 4 -3

74 8 4 -4

75 8 5 -3

76 9 5 -4

77 9 7 -2

78 9 8 -1

79 9 9 0

80 10 10 0

81 10 11 1

82 11 11 0

83 11 12 1

85 12 13 1

86 13 14 1

87 13 15 2

89 14 16 2



If cif < d , then

n1 + d
m

(35) X
1 1N- m

42

This measure is based on the procedure of classifying an individual into

* *
category 1 if y < a and into category 2 otherwise, where a is the

scale point at which the value d occurs.

Table 10 shows the cumulative frequency distributions for the data

of Table 9, along with the d+ and d calculations.

Since d = 4 is greater than d+ = 2, we have

14 + 4 16

X1
30 30 2

- .1431_16 -
14

30

See Elashoff (1971) for further discussion and significance tests.

In the situation in which the variances may differ, a X
2

statistic has

been defined in Elashoff (1971).

Summary

No measures of association have been developed for the case where

one variable is continuous and the other ordered categorical. When the

categorical variable is not ordered, a measure related to the correlation

ratio which gives the proportion of variance in y accounted for by x may

be applied. When x is dichotomous, two variants of Pearson's r, rpb
and

rb, are available, and variants of y and ax have been developed.
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